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IN-HOUSE PROGRAM OVERVIEW

« RE-ESTABLISHED IN 1987
. FOCUSSED ON STEADY-STATE THRUSTERS AT POWERS < 1MW

. DEVELOPED PERFORMANCE MEASUREMENT AND DIAGNOSTICS
TECHNOLOGIES FOR HIGH POWER THRUSTERS

« DEVELOPING MHD CODE

« GOALS ARE TO ESTABLISH
- PERFORMANCE AND LIFE LIMITATIONS
- INFLUENCE OF APPLIED FIELDS

- PROPELLANT EFFECTS
- SCALING LAWS
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ALRNPLTE 11CODLO8T SMTTRMTE Lowie Resssrch Contar

MPD Thruster Technology

High Power MPD Thruster Test Stand

Thrust stand Vacuum facility

Data/controt 220 kW thruster

CD-91-54820

MPD THRUSTER TEST STAND

)

CURAENT CONDUCTING FLEXURLS

BURT IN LEVELING MECHANISM ALILALNLE INCUNUMETER
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HIGH POWER ELECTRIC PROPULSION (MPD)

DEMONSTRATED MPD THRUSTER POWER

300
POWER 2001
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DEMONSTRATED MPD THRUSTER POWER
INCREASING RAPIDLY
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MPD Thruster Technology

Performance Measured With Hydrogen and Argon

2— o Hydrogen 6
O Argon o o
& ‘.
_.-—Argon unstable
Efficiency .1 |— 0 o above this Isp
iy .
2"D, 3"L Anode 25mg/s flow rate
750 A discharge current
0 1 1 |
1000 2000 3000 4000

Specific impulse, sec

Performance dramatically improved with hydrogen
. Efficiency increased by 2X
. Isplncreased by 50%

CD-91-54824

Lewls Resesrch Center
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MPD Thruster Technology

Thruster Performance
Geometry and Applied Field Effects

Jd = 1000 A, m = 0.1 g/s argon

O 2inch diameter anode
O 3 inch diameter anode

A 4 Inch diameter anode 1800
o]
o
2— & o
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Applied Magnetic Field, T

« Efficiency increases with applied field strength
. Specific impulse increases with both anode radius and
applied field strength

CD-91-54022
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MPD Thruster Technology

Lewis Research Conter

Anode Power Deposition
Applied Field and Geometry Effects
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Increasing applied field strength and anode
diameter decrease anode power fraction

CD-91-548238
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HIGH POWER ELECTRIC PROPULSION (MPD)

MPD THRUSTER HIGH CURRENT
HOLLOW CATHODE TECHNOLOGY

Three hollow cathode assemblies fabricated
and prepared for evaluation

High area emitter Low area emitter

CD-#0-31136
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Lowls Ressarch Center

MPD Thruster Technology

Scaling Issues

« Megawatt class operation required for missions of interest
. Cannot operate megawatt class steady-state in current facilities

« Must be able to correlate MW class pulsed thruster operation and
steady state data -

- Data must enable rational extrépolation to high power levels

How do we realistically study MPD thruster performance and life
using currently available facilities?

CD-91-54828
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Lewie Research Cenier
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MPD Thruster Technology

Diagnostics

« X-Y probe positioning stand

- Electrostatic probes

- enclosed current contours

- Axial applied B field distribution
 Plume imaging

- Correlate ion density distribution with applied field
» Spectoscopy

- Non-invasive temperature and density measurements

C0-91-54029
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Lewis Resestch Center

MPD Thruster Modeling

Program Outline

Conservation of mass — density ( p)
Conservation of momentum — velocity (V; ,Vp ,Vz) Fluid loop
Conservation of energy — temperature (T)

Equation of state — pressure (P) -
Evaluate transport coeffs, hall parameters, etc...

Ohm's law and maxwell equatioris — induced fields (Bg)

Field loop | Maxwell (Ampere's) equation — current density (j)

Ohm's law — electric field (E — plasma potential)
evaluate energy source, sink terms, etc...

Convergence on exhaust velocity V" < 0.01 V:;d )

plasma potential: ®new < 0.01D otd)

—— No Yes Evaluate thrust, specific impulse, efficiency,...
Write to data files
Done _

CD-91.54837

Lewis Ressarch Center
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MPD Thruster Modeling
Comparison With U. Stuttgart Model/Experiment
(6kA, 6 g/s)
e — 1
Stuttgart-experiment Stuttgart-model NASA LeRC-model

Current fractions into anode segmentsﬂ

Segment 1: 46% 44% 51%
Segment 2: 27% 27%  22%
Segment 3: 27% 29% 27%

[NASA LeRC code in agreement with Stuttgart MPDT experiment/model

CD-91.5383y
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MPD Thruster Modeling

6.0

3.0

0

Comparison with Princeton University

Half-Scale Benchmark Thruster

Thrust Characteristics
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ENCLOSED CURRENT CONTOURS (MFEASURED)
12.4 kA, 1.5 g/s, QUASI-STEADY OPERATION

ENCLOSED CURRENT CONTOURS (PREDICTER)
12,4 KA, 1.5 g/s, STEADY-STATE OPERATION
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MPD Thruster Modeling

Comparison with Princeton University

Half-Scale Flared Anode Thruster
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Lewis Resesrch Center

”

MPD Thruster Modeling

Status

. Self-field version of MPDT code operational
- Modest execution times 3-5 hours VAX-CPU)
- General agreement with experimental resuits
- Thruster performance evaluations underway
- Applied-field version of code under development
- Routines for applied-B distributions incorporated

- Preliminary testing/modification in progress

CD-91-54840
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KEY TECHNICAL ISSUES
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KEY SCALING ISSUES

« TWO PRIMARY CONCERNS
- POWER LEVEL SCALING
- QUASI-STEADY VS. STEADY STATE

« ISSUES MUST BE ADDRESSED USING X
- THEORETICAL MODELS TO ESTABLISH TRENDS AND
DEPENDENCIES
- HGIH FIDELITY PERFORMANCE MEASUREMENTS
- DETAILED DIAGNOSTICS OF PLASMA AND ELECTRODE PROCESSES

USED TO:
A. ESTABLISH FUNDAMENTAL RELATIONSHIPS

B. VERIFY MODELS

NASA

Lﬂ: SPACE PROPULSION TECHNOLOGY DIVISION T & = .

TLCroen OGY

PERFORMANCE EXPECTATIONS:
MUST EVALUATE EFFECTS OF :
- PROPELLANT AND APPLIED FIELD

- ELECTRODE SIZE AND SHAPE
- PROPELLANT INJECTION

RELATION BETWEEN QUASI-STEADY AND STEADY-STATE:

. MUST ESTABLISH DATA BASE WITH CORRECT PROPELLANT IN THE
APPROPRIATE OPERATING RANGE (J2/m?)

- MUST MEASURE PERFORMANCE, CURRENT DISTRIBUTIONS, PLASMA
AND ELECTRODE PARAMETERS
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« NOT CORRELATED WITH POWER
« STRONGLY INFLUENCED BY

- PROPELLANT CHOICE

- APPLIED OR SELF-FIELD

* Sovey, J. and Mantenieks, M. "Performance and Lifetime Assessment of Magnetoplasmadynamic Arc
Thruster Technology", J. Propulsion and Power, Vol.7, No. 1, Jan-Feb 1991

Lewis Reseasch Conter
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FACILITY REQUIREMENTS

THRUST DISCHARGE VOLTAGE
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Ressarch Center

FACILITY REQUIREMENTS
EFFICIENCY CHANGE IN Vg, AND Vg
' . i—x I:::::" “ 3

! 3 L 10 N ' e 100

Faellity PRscsevis, miliivers regility Pzesevie . ®L1MTers

Similar anode heat xfer effect observed
by Saber with self-field thrusters

4" D, 3"L ANODE, 0.1 G/S ARGON, 1500 A DISCHARGE, Bz=.1T

ANTD  space propuLsion TEcHnoLoGy pivision  NASA

ALROSPACH 16 0s P LS T LW CIOM TE Lewis Research Center

POTENTIAL MPDT FACILITIES

THRUSTER POWER, MW OPERATION  ESTIMATED

FY FACILITY H2 AR TIME, HR COST, $K
PRESENT  LERCT5,T6 0.1 (DEM) 0.22 (DEM) CONT. = ==
1992 LERC TS 0.71 1 1-2 250 K
1993 LERC TS 1-15 2 4-6 400 K
1995 LERC T6 1-15 2 ‘CONT 3500 - 5000
1995 LLNL MFTF 1-5 ‘CONT 5000 - 7000
1998 LERC T6 1-5 1-5 ‘CONT. 18D
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MATERIAL LIMITATIONS

ANODE: ' ‘ .
« MEASURED HEAT FLUX AT HIGH POWER > 5 KW/CM2

- LITHIUM HEAT PIPES LIMITED TO < 0.5 KW/CM?2
- OPTIMIZED BEAM DUMP (Cu) LIMITED TO ~ 5 KW/CM2,
- SSME THROAT HEAT FLUX ~ 16 KW/CM2 (relevance?)

CATHODE: )
. CURRENT DENSITIES AT HIGH POWER > 100 AICM?2
~LONG LIFE CATHODES LIMITED TO CURRENT

DENSITIES < 20 A/CM2 (LOW W.F. TWT CATHODES)

INSULATORS:
« KNOWN TO FAIL AFTER PROLONGED EXPOSURE TO UV AND

HIGH TEMPERATURE

. WE MUST SELECT GEOMETRIES WHERE PERFORMANCE AND
ENGINEERING LIMITS CAN BE EVALUATED

* PRINCETON UNIVERSITY

AT  sPACE PROPULSION TECHNOLOGY DIVISION NASA

Lewis Research Center

't i C1omR OGY

FACILITY LIMITATIONS:

- MUST MEASURE PERFORMANCE AT PRESSURES <5 X 10 Al
- FACILITY PRESSURE HAS LARGE EFFECT ON ANODE HEAT XFER,

NOT CLEAR ON CATHODE

THRUSTER VIABILITY:

. ggguw FOCUS ON DEVICES WHICH MATCH ENGINEERING LIMITS
ANODE HEAT TRANSFER
CATHODE CURRENT DENSITY
INSULATOR LIMITS
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